Orthogonal Margin Maximization Projection for Gait Recognition

نویسندگان

  • Shanwen Zhang
  • Chuanlei Zhang
چکیده

An efficient supervised orthogonal nonlinear dimensionality reduction algorithm, namely orthogonal margin maximization projection (OMMP), is presented for gait recognition in this paper. Taking the local neighborhood geometry structure and class information into account, the proposed algorithm aims to find a projecting matrix by maximizing the local neighborhood margin between the different classes and preserving the local geometry structure of the data. After projecting, the data points in the same class are pulled as close as possible, while the data points in different classes are pushed as far as possible. The highlights of OMMP include (1) takes both of the local information and class information of the data into account; (2) considers the effect of the noisy points and outliers; (3) it is supervised and orthogonal; and (4) its physical meaning is very clear. The experimental results on a public gait database show the effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Maximum Margin Projection for Face Recognition

Dimensionality reduction techniques that can introduce low-dimensional feature representation with enhanced discriminatory power are of paramount importance in face recognition. In this paper, a novel subspace learning algorithm called orthogonal maximum margin projection(OMMP) is proposed. The OMMP algorithm is based on the maximum margin projection (MMP), which aims at discovering both geomet...

متن کامل

Supervised projection approach for boosting classifiers

In this paper we present a new approach for boosting methods for the construction of ensembles of classifiers. The approach is based on using the distribution given by the weighting scheme of boosting to construct a non-linear supervised projection of the original variables, instead of using the weights of the instances to train the next classifier. With this method we construct ensembles that ...

متن کامل

Generalized Maximal Margin Discriminant Analysis for Speech Emotion Recognition

A novel speech emotion recognition method based on the generalized maximummargin discriminant analysis (GMMDA) method is proposed in this paper. GMMDA is a multi-class extension of our proposed two-class dimensionality reduction method based on maximum margin discriminant analysis (MMDA), which utilizes the normal direction of optimal hyperplane of linear support vector machine (SVM) as the pro...

متن کامل

Two-dimensional approximately harmonic projection for gait recognition

This paper presents a two-dimensional approximately harmonic projection (2DAHP) algorithm for gait recognition. 2DAHP is originated from the approximately harmonic projection (AHP), while 2DAHP offers some advantages over AHP. 1) 2DAHP can preserve the local geometrical structure and cluster structure of image data as AHP. 2) 2DAHP encodes images as matrices or second-order tensors rather than ...

متن کامل

Two-dimensional Maximum Margin Projection for Face Recognition

To effectively cope with the high dimensionality problem in face recognition, a novel two-dimensional maximum margin projection (2DMMP) algorithm for face recognition is proposed in this paper. Specially, 2DMMP is based on the maximum margin projection (MMP) and fully considers the intrinsic tensor structure of face image. By utilizing both local manifold structure and discriminative informatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015